The Open Storage Network as a Storage Solution for NSF CC* and Other Program Solicitations

Dr. Christopher S. Simmons Deputy Director, MGHPCC csim@mghpcc.org

US Research Cyberinfrastructure Today

Computation	Networking	Storage
Local, Regional and National Resources	Over 200 universities with 40/100Gb	Largely Balkanized Many standards to choose from; typically tied to a single system
Standardized	Connectivity Standardized	

CC* Program Requirements

- The program supports open-source platforms and solutions
- Software license fees are not allowed
- Budget request for professional services are allowed
- At least 20% of the disk/storage space on the proposed storage system should be made available as part of the chosen federated data sharing fabric
- OSN provides all of this as a service via ACCESS
- Pod owners use our coldfront portal to request projects and buckets
- OSN has been the storage solution for 6 successful CC* Data Storage Awards

The Open Storage Network

National resource for sharing open scientific data

With Distributed Infrastructure and Governance

With Simple and Flexible Access and Management methods

Distributed Infrastructure

FAIR Data Guiding Principles

• Findable

• Globally unique persistent identifier, metadata registered or indexed in a searchable resource

OSN Focus

Accessible

• Standard protocols; authentication and authorization when needed; persistent metadata

• Interoperable

- Metadata vocabularies and formats that support exploration and use of available data sets
- Reusable
 - Well described attributes, provenance, terms of use, and domain-relevant community standards

Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3:160018 doi: 10.1038/sdata.2016.18 (2016).

Simple and Flexible Access and Management

- Access from anywhere
 - RESTful API (S3 riding on https)
 - Think of OSN as a publicly-routed data lake
- Authentication and Authorization services
 - Federated identity protocols and services
- Security and data integrity
 - Open-source Ceph object store
- High performance
 - Research networks and commodity servers

Key Ideas

- Every data set is a collection of objects
- Every object is accessible from anywhere
 - site-name.osn.xsede.org/bucket name/data set name/object name
 - e.g. https://mghp.osn.xsede.org/osndemo1/AHM18_OSN_Poster.pdf
- Physical storage is distributed across multiple sites
 - Located in science DMZs for fast access preferably on Internet2

Access and Curation

• Open Access Data Sets

- Readable by anyone
- Writeable by anyone with access to the RW API key pair
- Protected Access Data Sets
 - Readable by anyone with the RO API key pair
 - Writeable by anyone with the RW API key pair

Beyond "just" sharing data

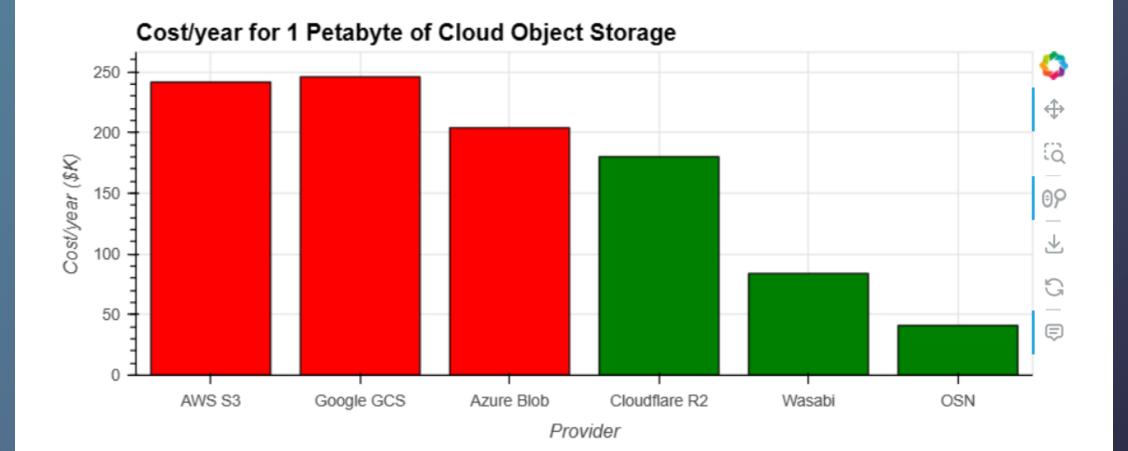
- OSN was originally designed as "just" a low-friction platform for sharing data across organization boundaries
- However, projects and organizations are starting to use OSN as part of their larger cyberinfrastructure plans
- We now allow Universities, Non-Profit Organizations, and Government Labs to purchase their own OSN "appliance"

OSN summary

- You own the infrastructure
- Distributed OSN Implementer's Team does the sysadmin/operations work
- Operations transparent; Open weekly meetings and GitHub-hosted playbooks
- Cost-recovery model run by non-profit organizations using commodity hardware and open-source software

Workflows enabled by OSN

- Check in / Check out locally or on campus and national systems
 - Rclone, cyberduck (S3 native)
 - Globus (via the AWS S3 Connector); Also adds support for ACLs
- Compute locally while accessing storage remotely
 - Python Zarr, boto3, fsspec + kerchunk
 - Julia AWS.jl and AWSS3.jl
 - R aws.s3 package
- Mountable file system
 - S3FS, rclone, iRods, juicefs
- Use as backend storage w/ a Research Data Management Platform
 - Dataverse, InvenioRDM, Clowder, iRods


Workflows enabled by OSN for AI/ML Pipelines

- AI/ML and LLMs require traceability and reproducibility
- Data "just" sitting on a POSIX file system and consumed doesn't capture history and metadata
- Multiple Data Version Control solutions help tackle this problem
 - Git LFS versioning data directly with Git but stored on OSN
 - DVC versioning of model and data based on GitOps principles
 - LakeFS GitOps for data pipelines with support for multiple APIs including Apache Airflow, Hive, Spark and native R and Python with a total of 22 integrations

OSN Cost Model

- You purchase an OSN Gen2 Pod
 - ~\$100K today but expected to go down over the next ~6 months
 - 3 x 1 U Dell Services
 - 1 x 4U Seagate Exos AP with 106 SAS drives
 - 5 years of support
- You send us \$10K per year for 5 years
 - Current cost model is \$10K per organization NOT per Pod
 - This is subject to change for next CC* cycle or future purchase
- You rack and stack in your data center and boot each node once with a provided USB drive or host with us for an additional fee
- We do the rest!

Independent OSN Cost Analysis by USGS

Questions?